
Chromatic and Harmonic Scales for Intuitive Sonographic
Compositions

Vincent Lesbros
GAIV - Ferrassie-TV
lesbros@gmail.com

Abstract
Historically, sonographic representations of sounds are based on
two types of scales: linear or logarithmic (Xenakis, 1971; Roads,
1995; Lesbros, 1995, 1996; Xiaoying, 2008). These two kinds
of scales introduce beats between sounds produced by adjacent
lines of the image. In a linear scale, for example, of 1 Hz by pixel,
a beat of 1 Hz will appear if any horizontal line has a thickness
of more than 1 pixel. In a logarithmic scale, for example, of
192 ppo (pixel per octave), a beat of one 16th of semitone will
spread. Here, we introduce a new kind of scale in order to use
hand drawn sonographs, avoiding this particular beat effect.
We extend the usual additive method to frequency modulation
and add a way to spacialize sonographs in stereo channels. We
propose different kinds of filters to control rhythm and harmony,
and finally, we expose a way to compose music tightly linked
with a video by creating sonographs directly from video frames.

1.	 introduction
If music and painting pull at your heartstrings, you may like to
create a correspondence between the two, turning a simple brush
stroke into a flight of lyricism, letting colour set the tone and the
power behind the brush bring new vivacity to a piece of music.
While so doing, you will want to know all the ins and outs,
understand the underlying physical structure, the theory of
light (QED: The Strange Theory of Light and Matter; Richard
Feynman, 1985) and the fundamentals of sound synthesis.
UPIC (Unité Polyagogique Informatique du CEMAMU),
Phonogramme (Vincent Lesbros 1991) and Sonographe (Vincent
Lesbros 2004) have paved the way. Cyclonium is the fruit of
more advanced research, aiming toward a faithful reproduction
of spontaneity and in-depth understanding.

This article focuses on three points developed in our new
framework Cyclonium: frequency scales with regard to timbre,
the geometry of rhythm associated with mathematical series
and potential cohesion between musical composition and the
temporal progression of animated images, such as those in
videos or in films.

The standard use of Sonographe consists in the design of a
two dimensional image, structured from left to right in time, and
from bottom to top for the bass frequencies up to the treble ones.
The image is thus translated into sound by a logical computer
process: a formula in line with physics, taking place in a discrete
world, where the real numbers are reduced to artificial and
incomplete representations1.

1	 See standard IEEE, (David Goldberg 1991). (Bruce Dawson
2014, Intel underestimates Error Bounds by 1.3 quintillion https://
randomascii.wordpress.com/2014/10/09/intel-underestimates-er-
ror-bounds-by-1-3-quintillion/.).

The game consists in transmitting, in the best possible way,
the author’s creative energy during the rendering of the final
result, by transforming the initial trace left on paper into speaker
vibration.

The choice of language is paramount in what it is possible to
express (1996, Claude Hagège, L’homme de parole). « Composer
c’est programmer, programmer c’est composer » wrote Giuseppe
Englert. (Giuseppe G. Englert, 1989).

Cyclonium builds a bridge between the efficiency of the
C language and the flexibility of Smalltalk with a constant
concern to help visualize the manipulated elements and
processes of transformations and calculations. The latest version
automatically generates the C code and the interface for the
programs expressed by the user in the Smalltalk environment by
drawing graphical schemes.

By composing a piece of music on paper with a brush, you
will be able to obtain a comprehensive, heuristic and intuitive
vision, with no holds barred as to your creative gesture.
Translating the strokes, the colors and the textures, takes you
closer to the physical structure of the image and sound. If you
do not actually reach their physical structures, their IT ersatz is
at least created.

Cyclonium offers a discrete space-time at the level of the
sample in the sound domain and at pixel level in the graphical
field, as well as special tools for linking visual and sound aspects,
opening the door to any new creative metaphor significant in
these spaces. Images can thus be translated into sounds through
the programming activity. Moreover, it is also a way of creating
first-hand what moves us, namely images and sounds.

In conclusion, a simple rule in the programming space can give
rise to complex phenomena, usable in the artistic effervescence,
and yet to be described. Cyclonium is an exploratory tool to
reveal these phenomena, raw material for creation.

2.	 Enhancing Sonographe frequency scales
The initial purpose of this research was to compose music for films
and one of the aims was to be able to harmonically combine real
instruments and artificially synthesized sounds. The synthesized
sounds should then match the chromatic scale in semitones of
classical instruments and natural or usual perception. So we first
divide the height of the image in a logarithmic scale but inside
each step of this scale, corresponding to a semitone, we introduce
a harmonic sub-scale in order that two adjacent lines in a step
will be a harmonic of the other:

[:i | | h dt |
	 h := (i - 1) \\ 32.
	 dt := (i - 1) // 32.
	 (440 / 64) * (2 raisedTo: (dt / 12)) * (1 + h)]

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
IWST’16, August 23 - 24, 2016, Prague, Czech Republic
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4524-8/16/08…$15.00
DOI: http://dx.doi.org/10.1145/2991041.2991060

The above code is the formula to compute a scale with 32
pixels by semitone with 32 harmonics by semitone. "i" has to be
the index of the line of the image, ranging from 1 to the height
of the image, "h" is the rank of harmonic, "dt" is the semitone
number. The base line starts at 440.0 Hz / 26, six octaves below
the A 440.0 Hz. "\\" denotes modulo and "//" the integer division.

A graphic of the result is shown in figure 1.
Our framework called Cyclonium is developed in Smalltalk

and C languages. The graphical interface is used to connect
elements and blocs of Smalltalk code may be used to add any
new function.

Figure 2 presents the graphical interface to construct the
scale described above.

Figure 1. A chromatic and harmonic scale of frequencies.

Figure 2. The graphical interface in Cyclonium to construct
the scale: the element named Biomibaukubokan is a channel
with one source, its source Smipazofiobafovouteur is a generic
operator described by a Smalltalk block that takes in input the
index of channel calculated by the Admapaugh element.

In this case, we choose semitones and harmonic scale, but
any micro-tonal and inharmonic partials can be used as any
random set of frequencies. The code module used to compute
the sonograph is written in C language or, in the basic cases, uses
the OpenGL library to delegate computing to the graphic card.

The user gives the image to be interpreted, a duration in
milliseconds, and at least one frequency scale. By default a sine
waveform is used for the additive synthesis.

If the user gives a second frequency scale, the system will
interpolate frequencies between the first and the second along
the whole time of the image for each line independently. This
enables the user to describe frequency scales varying linearly
from one scale to another along the x axis. A third option is
provided to precisely control frequency of each dot of the image:
the user gives a second image of the same size whose values
are used to calculate the frequency of each point by using it’s
value as a weight between the first and the second scale. This
may be used, for example, to introduce vibrato or temperament
variations locally.

In short, the interface of the Sonographe element in
Cyclonium takes: an image, a duration, the first frequency scale,
optionally a frequency control image, a second frequency scale,
optionally a waveform (by default a sine wave), eventually a
frequency modulation element (see below), and eventually an
image used to spacialize the sound in a pair of stereo channels.

Figure 3 shows the interface for a Sonograph in Cyclonium2.
2.1	 Benefits of the chromatic and harmonic scale
As we are drawing sonographs by hand, it is not easy to know how
a drawing will sound. Brushstrokes are generally more than one
pixel thick and with a classical scale they induce characteristic
beats. In our case, strokes may cross semitone boundaries, but
the thickness of the brush corresponds more to the harmonic
richness than to a cluster of close frequencies.

Timbre in additive synthesis is controlled by partial
amplitudes. As partials are regularly dispatched following a
modulo rule it is easy to build an image that can be used as a
filter by multiplying it with the source image in order to control
amplitude of partials. For example, to generate a filter of 2336
pixels high, for 32 harmonic amplitudes linearly decreasing the
following code block is connected to a Dessinateur element:

[:p | 32 - ((2335 - p y) \\ 32)]

2	 The whole scheme may be saved in XML format for later
use. Each element has a unique name automatically generated, but the
user can rename and describe them as he wants. Hyperlinks to web
pages may be included in full description of elements for their docu-
mentation.

The resulting image is then multiplied by the source image
to produce a new input to the Sonographe element (see figure
4, 5 and 6). The filter may be used in an external application
like GIMP or Photoshop and used as a layer mask or the filtered
image may be directly produced with a binary block taking in
parameters the image and each point of the image:

[:i :p | (i lecture: p) *
	 (32 - ((2047 - p y) \\ 32))]
Operators in Cyclonium may operate directly on images. To

multiply two images, we just have to connect a product operator
on the two images and compute it.

Figure 3. Colkaufuguchaugakafauma: Imported colored image (bmp or jpeg). Kofudafa: Constant expressing the duration
in milliseconds. Chuimouka: Automatically generated sine wave for the waveform. Suoaugochabefi: Sonographe element.
Biomibaukubokan: Frequency scale used two times, from start to end, because it has to be constant in this case. Midoubibavachakukan:
Mono sound channel resulting of the computation of this Sonographe. The signal is then saved in any sound file format managed by
the Libsndfile from Erik de Castro Lopo (http://en.wikipedia.org/wiki/Libsndfile).

2.2	 Chords and modal filtering
At this point, we can compute music in a chromatic scale and
have a graphic control on pitch, dynamic and timbre. A simple
set of new filters may be used to control chords. If we had to,
or if we want the result to be constrained by harmonic rules or
modal scales, we just have to multiply image by a new filter.
As our filters are expressed in gray value scale image, the chord
progression may be smooth or harsh. As chords and/or modes are
expressed in the 2D space of time and frequency, we can draw
retards, anticipation, and even mix different chords at the same
time for different frequency ranges.

Figure 4. Example of a chord filter image build with 3 four-
voice chords: 0 3 6 10, 0 4 7 11 and 0 4 7 10.

Figure 5. Image of figure 6 filtered by harmonic and chord filter
of figure 4.

For example, this is the block of code to build a simple four-
voice chord of degree VII major or the second degree minor:

[:p | (#(0 3 6 10) includes: ((4095 - p y) // 32) \\ 12) 	
	 ifTrue: [1] ifFalse: [0]]

0 3 6 10 are the intervals in semitone from the fundamental.
4095 is one less than the desired height of the image and 32 is the
number of pixels by semitone.

Once we have built all the desired chords, modes and scales,
we combine them in an external graphic editor and then multiply
the image by the resulting filter.
2.3	 Image encoding adapted to sound control parameters
Usual painting, image tools and image file formats use only 8 bits
by component to store value of pixels and 8 bits means only 256
different levels. In our case of using images to control intensities,
frequency variations, and any sound parameter, we need more
than 8 bit resolution. In our framework, we choose 16 bits to
store gray levels for each pixel of an image. This leads to 65536
levels. In order to keep compatibility with external softwares, we
use the following method to encode 16 bits gray level images
into 24 bits colored images:

The first four high bits are triplicated in each first nibble of
the RGB components, then, the lower weight bits are shuffled in
the remaining space, alternatively in R, G and B. Figure 8 shows
this wrapping.

For the user, resulting images in RGB are close to the
original gray value image and, for the computer, the 16 bits
original data can be used. The framework leaves the possibility
to save a calculated image either in RGB encoded bmp, lossless,
or to export it in standard 8 bit gray value bmp with a loss of data.

Figures 9 and 10 show the same image with the two encoding
format construct with the code:

[:theta :r |
	 (theta + (r * 15)) sin]

Figure 6. Original image, painted with watercolor and filtered
in three steps: a negative filter is applied to convert the white
background into black, then as all the colors have changed to
negative, we apply a rotation of 180° on the hue component
to restore tint. The last step is to apply a level filter in order to
enhance contrast and eventually cut off the noise induce by the
grain of paper.

Figure 7. A detail of the image figure 6.

Figure 8. Encoding 16 bits gray levels into 24 bits RGB.

Figure 9. 8 bits standard gray level image.

Figure 10. 16 bits gray levels image encoded in RGB. Notice
that this image looks very similar than the figure 9 image, this is
expected, but the data encoded are on 16 bits instead of 8.

Figure 11. 3D view of the levels.

2.3.1	 Colored images
We can also directly use a colored image as the input. In this
case, the color value coded in RGB is divided by 16777215 to get
a value between 0 and 1. As the red component has a factor of
256*256, the green component 256 and the blue component only
1, this is not a correct nor conventional transcription of a color
into an intensity but it is useful in practice to avoid conversions
and results are still in conjunction with our perception of the
image.
2.3.2.	 Virtual images
Images may be seen as function of x and y coordinates. When we
can express them by a formula, we don’t have to store every pixel
value in memory. Instead, we only give a block to be evaluated
each time the value is needed. This kind of image has no frame,
neither height nor width.
2.4	 Sonographe with frequency modulation
As mentioned above, a Sonographe element can be connected to a
Modulator element. The Modulator element like the Sonographe
element takes as input an image to control amplitudes, one or
two frequency scales and an optional frequency control image
to control the modulation frequencies with the same rules, an
optional wave form and finally an element giving the modulation
indices for each line of the image.

3.	 Time and rhythms aspects in Sonographe
Actually, the time in sonographs is linear and constant for a given
computation. It is expressed in milliseconds by pixel, or in an
alternative way, we give a duration in milliseconds for an image
or a sequence of images and the sample frequency, then, the
value of number of sample by pixel is deduced.

For all the parameters of sonographs controlled by an image,
the procedure includes automatically a maximal variation of the
parameter from one pixel to the next in the time axis. By default
the maximum variation is one divided by the number of samples
in one pixel, but we can set any coefficient to this value in the
setting of the Sonographe element, independently for increasing
and decreasing values. For example, we can set different values

for the attack and the release, or for ascending and descending
portamenti when an image controls the frequencies. In the same
way, we can control the maximum speed of the pan to the left
or to the right. The limitation is that this control is global on the
image or the sequence.
3.1	 Geometric progression and rhythms
We now focus on rhythms and we want to go beyond the
mechanical constraint of linear time given in milliseconds per
pixel by constructing rhythm filters (or time stretching patterns)
for our sonograph images.

A time stretching pattern is an image where the gray levels
are normalized abscissa of points to be taken in the source image.
The time identity function is a pattern with a shade of gray from
black on left to white on right, and will result in no change, just
copy the source image.

For example, we want to build a rhythmic cell that will be
repeated with a geometric progression, accelerating, but with the
aim that, at the end of a sequence, the sum of k + 1 cells gets
the same duration as the first one. The problem is the same for
decelerating by reversing the x axis orientation.

We are looking for the common ratio q of a geometrical
sequence U0, U1, ... , Un of n + 1 terms, such that the sum of k + 1
last terms be equal to the first term.

We must have : n ≥ 2, q ≠ 1, k < n.
In general for any geometrical progression we have:
Up + Up+1 + ... + Un = Up * (1 – q (n−p+1)) / (1 – q).
If p = n – k we have
Un-k + Un-k+1 + ... + Un = Un-k * (1 – q (n−n+k+1)) / (1 – q)
and, as Un-k is a term of the progression,
Un-k = U0 * q (n - k)

and we want that : U0 = Un-k + Un-k+1 + ... + Un
So :
U0 = U0 * q (n - k) * (1 - q (k + 1)) / (1 - q)
1 = (q (n - k) - q (n + 1)) / (1 - q)
1 - q = q (n - k) - q (n + 1)

We get the general formula :
q (n + 1) = q (n - k) + q - 1

A well known particular case:
If n = 2 and k = 1, there are 3 terms and the sum of the last

two is equal to the first.
q3 = q1 + q - 1 = 2q - 1
We find that the reciprocal of the golden ratio : 0.6180339887...

is a solution.
As the general formula is of high degree, we find the value of

the ratio q by approximations.
Here follows an array with the first values of n and k:

n k q
2 1 0.6180339887
3 1 0.7548776662
3 2 0.5436890127
4 1 0.8191725134
4 2 0.6823278038
4 3 0.5187900637
5 1 0.8566748839
5 2 0.7548776662
5 3 0.6518234538
5 4 0.5086603916
6 1 0.8812714616
6 2 0.8000949944
6 3 0.724491959
6 4 0.6368829168
6 5 0.5041382584
7 1 0.8986537126
7 2 0.8311059462
7 3 0.7713274516
7 4 0.708133776
7 5 0.6289286919
7 6 0.5020170552

Example:
Once we get the formula for a particular case, for example,

n = 6 and k = 2
q (n + 1) = q (n - k) + q - 1
q 7 = q 4 + q - 1
we get an expression in high degree, with no simple way to

find the roots. The approximate value of q is 0.8000949944 in
this case. Then we compute the series U0, U1, ... Un and sum the
series:

0, U0, U0 + U1, U0 + U1 + U2, etc., up to the width of the
destination image. We associate these accumulations to the
source coordinates to form the control points of a spline, and
finally approximate the spline to a polyline with a sufficient
precision (see figure 12).

4.	 Sounds and music production from video
We propose here two ways to create sounds and music from video
using the time / frequency representation of sonographs and
another method, using trajectories of virtual mobiles (Lesbros,
1999). All these methods give results that are tightly coupled to
the video images along time.
4.1	 Sonographe sequence
The first one is to select a set of video frames, taken at regular
time intervals and to chain the sonographic transformation of

Figure 12. Time stretching pattern for the case n = 6 and k = 2.
We get 7 bands, and the width of the first one is equal to the
sum of the width of the three last. This image is later used to
transform coordinates of the real rhythmic pattern to be used in
the composition. Regular time pulsations in the source image
will be accelerated regularly (in geometrical progression), and
respecting the fact that the three last occurrences will have the
same duration than the first one.

each selected frame. For example, we choose a time interval
of three seconds, we select one frame of the video every three
seconds, and on each frame we compute a sonograph of three
seconds.

Our function library enables us to chain computation on
successive images3 by returning all current temporary values
to the caller at the end of each step. For example the current
envelope value, the current frequency, the current pan value, etc.
for each line. This yields a continuous sound in spite of frame
boundary crossings.

As in the case of a unique image, the user gives the total
duration in milliseconds. This duration is divided by the number
of images in the sequence. The system calculates an entire
number of samples by image.
4.2	 Trajectories
The sequence of image element can point to a computation
chain that calculates the index of the image to use at any step
of a computation. If we are computing a sound channel, a step
of computation will correspond to one sample of the produced
signal. If we are computing an image (with a Dessinateur
element), a step will correspond to one pixel. Thanks to these
properties, we can produce sounds whose parameters, or even
direct sample values, are taken from any frame of the sequence.
If it is ensured that the index of the frame is calculated in relation
to the time, the produced sounds will fit to the evolution of the
movie or film.

3	 The user interface representing a sequence of images needs
only to know the folder where images are stored. All the images have
to be of the same size and they are computed in alphabetical order,
but they don’t have to be taken from a video, theses sequences may be
constructed by any other source.

Figure 13. Kagu: a sequence of 146 images.
Smizazouteur: the image selector receiving the index of a
sample and producing the index of a frame in the sequence with
the following block of code:

[:i | (((i - 1) * 146) / 6912000) + 1]
"i" is the sample index (from 1 to 6912000), 146 is the number
of frames.
Zikedouguifadi: a trajectory.
Oogakipavu: a cog used to link our instrument Utpazifufu with
the trajectory and the image sequence.
Kouzeme146images: The resulting channel being calculated. It’s
length is 6912000 samples corresponding to the 144 seconds of
sounds at 48000 Hz (the standard sample rate for video).

In this example (figure 13), reduced to the minimum, the
trajectory is fixed and the frequency of the instrument is fixed
too. There is no amplitude control or frequency modulation. But
the framework provides elements to build calculation chains to
modify and combine trajectories, to sample images along these
trajectories and to use these values for controlling frequencies,
amplitudes, frequency modulation, etc., in fact, any value in the
scheme. Elements are also provided to compute elastic coupling
in conjunction with trajectories. See (Rainer, 2004, Lesbros
1999) for quick synthesis algorithms.
4.3	 Building a summary of a video
With the same two principal elements; a sequence of image
coming from a video and a selector, we can build an image that
acts as a summary of the video on which we can compute the
sonograph. Prior to computing the sonograph, we can apply all
the filtering methods we have seen above; harmonic filtering,
chord filtering, etc.

A Dessinateur element is used to create the new image. Each
step of computation consists in determining the value of a given
pixel. The Dessinateur element provides the coordinates of the
point to be calculated, and its input should respond with the
value to store in the produced image at that location.

The heart of this example (figure 14) is the element that gives
the value to the Dessinateur. For the extraction of the green
component this element uses the following code:

[:i :p | | aRate aColor |
 aRate := (p y / 2335) * 436.32 + ((2335 - p y) / 2335).

 aColor := i couleur: ((p x * 3504 * aRate / 7272) @ p y).
 aColor green]

The block receives the image sequence, "i", and the
Dessinateur current coordinate "p" as parameters. "aRate" is

Figure 14. In this example, the sequence Fofepauka contains 3636 images extracted from a video of 145,44 seconds (at 25 frames by
seconds) and we construct a summary of 7272 pixels wide. The selector Smaduzivamuiteur is a Smalltalk block of code:

[:p | (p x * 3636 / 7272) + 1]
where p given by the Dessinateur element, is the coordinate of the desired point in final image. The value returned is the index of
frame in the sequence (between 1 and 3636).
The Dessinateur Tyrmuigukuipivasaure has been set with the following parameters and choices: 7272 x 3636 for the size of resulting
image, unset automatic level to insure that values of components of the image will stay unchanged and process from left to right
instead of top down to limit the number of time an image from the sequence will be loaded into memory.

the rate at which we want to scan source images and we make
it dependent of the ordinate which is linked to the frequency.
We want low lines to be scanned at three times per second
(145.440 * 3 gives 436.32) and high line at only one scan for the
whole piece. Then we compute the x and y coordinates (y is left
unchanged) and ask for the color of the point with the #couleur:
message. Finally we deliver the green component value, ranging
from zero to one. We do the same for red and blue components
and with the Pemiochiogouzaupadouteur element we are able to
reassemble the three components into one image which can be
seen as a summary of the video. The next step is to use this image
to generate sounds evolving with the movie.

5.	 Conclusion
Our framework is still under development. A set of tools has
been built in order to create images, sound and music from
images. As the computations are not in real time, we can set the
atomic level of a chain of computation at the sample level or
even at a subsample level (Roads 2001, p3-5). This may enable,
for example, to control envelopes with the same unit of time as
the samples.

Using generic operators and the Smalltalk language keeps
the framework open to new experimentation. For example, by
using generic operators, one may combine elements used to
generate MIDI files with a Traceur element to generate at the
same time a MIDI score and an image usable in a Sonographe.
Any method can be used to generate paintings used with any
mapping in musical compositions (Guéret et al., 2004; Mao et
al., 2002; Thiebaut et al.; 2008).

By introducing variable scales and frequency control through
images, we enhance the possibilities of sonographic composition.
Sonographs with frequency modulation and pan are also open to
new experiments, combined with filters for harmonics, chords
and/or rhythmic time stretching patterns.

Finally, we show how to use sequences of images extracted
from a video in order to have any parameter of a generated sound
matching the stream of the video.
Annexe 1 sound samples

https://soundcloud.com/vincent-lesbros
http://www.f-tv.info/fr/cyclonium

Figure 15. The summary image of the video with variable scan rates according to the ordinate.

References
Englert, Giuseppe G., 1981, Automated Composition and
Composed Automation, dans : The Music Machine, édité par
C. Roads MIT Press 1989 p-191, translated from french by
Otto LASKI with Curtis ROADS. Musique : Composition
Automatique, Automation Composée, Informatique et Sciences
Humaines 45, Sorbone, Paris, 1981.
Goldberg, David, 1991, What Every Computer Scientist Should
Know about Floating-Point Arithmetic, ACM Computing
Surveys, vol. 23, no 1, mars 1991.
Guéret, Christophe ; Monmarché, Nicolas ; Slimane, Mohamed,
2004, « Ants can play music » in : Conference: Ant Colony
Optimization and Swarm Intelligence, 4th International
Workshop, ANTS 2004, Brussels, Belgium, September 5 - 8,
2004, Proceedings
Lesbros, Vincent, 1995, « Atelier Incrémentiel pour la musique
expérimentale », Thèse de Doctorat en Intelligence artificielle,
Paris, Université de Paris 8.
Lesbros, Vincent, 1996, « From images to sounds: a dual
representation », Computer Music Journal, 20(3):59-69.
Lesbros, Vincent, 1999, « Phonograms, Elastic Couplings, and
Trajectories », Computer Music Journal, 23(2):70-79.
Mao, Xia; Chen, Bin; Zhu, Gang; Hoshino, Tsutomu,
2002, « Study on transforming from painting to music »,
VIPromCom-2002. 4th EURASIP - IEEE Region 8 International
Symposium on Video Image Processing and Multimedia
Communications, 16-19 June 2002, Zadar, Croatia.
Rainer, Harald, 2003, « Smart sound generation for mobile
phones », Diploma thesis at Graz university of Music and
Dramatic Arts.
Roads, Curtis, 1995, The computer music tutorial, MIT Press
Cambridge, MA, ISBN:0262181584
Roads, Curtis, 2001, Microsound (en). Cambridge: MIT Press.
ISBN 0-262-18215-7
Thiebaut, Jean-Baptiste ; Healey, Patrick G. T. ; Kinns Nick
Bryan; 2008, « Drawing electroacoustic music », Interaction,
Media and Communication, Queen Mary, University of London.
Xenakis, Iannis, 1971, Formalized music, Bloomington, Indiana
University Press.
Xiaoying, Wu, and Ze-Nian, Li, 2008, « A study of image-based
music composition », School of Computing Science, Simon
Fraser University.

