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Abstract
Historically, sonographic representations of sounds are based on 
two types of scales: linear or logarithmic (Xenakis, 1971; Roads, 
1995; Lesbros, 1995, 1996; Xiaoying, 2008). These two kinds 
of scales introduce beats between sounds produced by adjacent 
lines of the image. In a linear scale, for example, of 1 Hz by pixel, 
a beat of 1 Hz will appear if any horizontal line has a thickness 
of more than 1 pixel. In a logarithmic scale, for example, of 
192 ppo (pixel per octave), a beat of one 16th of semitone will 
spread. Here, we introduce a new kind of scale in order to use 
hand drawn sonographs, avoiding this particular beat effect. 
We extend the usual additive method to frequency modulation 
and add a way to spacialize sonographs in stereo channels. We 
propose different kinds of filters to control rhythm and harmony, 
and finally, we expose a way to compose music tightly linked 
with a video by creating sonographs directly from video frames.

1.	 introduction
If music and painting pull at your heartstrings, you may like to 
create a correspondence between the two, turning a simple brush 
stroke into a flight of lyricism, letting colour set the tone and the 
power behind the brush bring new vivacity to a piece of music.
While so doing, you will want to know all the ins and outs, 
understand the underlying physical structure, the theory of 
light (QED: The Strange Theory of Light and Matter; Richard 
Feynman, 1985) and the fundamentals of sound synthesis. 
UPIC (Unité Polyagogique Informatique du CEMAMU), 
Phonogramme (Vincent Lesbros 1991) and Sonographe (Vincent 
Lesbros 2004) have paved the way. Cyclonium is the fruit of 
more advanced research, aiming toward a faithful reproduction 
of spontaneity and in-depth understanding.

This article focuses on three points developed in our new 
framework Cyclonium: frequency scales with regard to timbre, 
the geometry of rhythm associated with mathematical series 
and potential cohesion between musical composition and the 
temporal progression of animated images, such as those in 
videos or in films.

The standard use of Sonographe consists in the design of a 
two dimensional image, structured from left to right in time, and 
from bottom to top for the bass frequencies up to the treble ones. 
The image is thus translated into sound by a logical computer 
process: a formula in line with physics, taking place in a discrete 
world, where the real numbers are reduced to artificial and 
incomplete representations1.

1	 See standard IEEE, (David Goldberg 1991). (Bruce Dawson 
2014, Intel underestimates Error Bounds by 1.3 quintillion https://
randomascii.wordpress.com/2014/10/09/intel-underestimates-er-
ror-bounds-by-1-3-quintillion/.).

The game consists in transmitting, in the best possible way, 
the author’s creative energy during the rendering of the final 
result, by transforming the initial trace left on paper into speaker 
vibration.

The choice of language is paramount in what it is possible to 
express (1996, Claude Hagège, L’homme de parole). « Composer 
c’est programmer, programmer c’est composer » wrote Giuseppe 
Englert. (Giuseppe G. Englert, 1989).

Cyclonium builds a bridge between the efficiency of the 
C language and the flexibility of Smalltalk with a constant 
concern to help visualize the manipulated elements and 
processes of transformations and calculations. The latest version 
automatically generates the C code and the interface for the 
programs expressed by the user in the Smalltalk environment by 
drawing graphical schemes.

By composing a piece of music on paper with a brush, you 
will be able to obtain a comprehensive, heuristic and intuitive 
vision, with no holds barred as to your creative gesture. 
Translating the strokes, the colors and the textures, takes you 
closer to the physical structure of the image and sound. If you 
do not actually reach their physical structures, their IT ersatz is 
at least created.

Cyclonium offers a discrete space-time at the level of the 
sample in the sound domain and at pixel level in the graphical 
field, as well as special tools for linking visual and sound aspects, 
opening the door to any new creative metaphor significant in 
these spaces. Images can thus be translated into sounds through 
the programming activity. Moreover, it is also a way of creating 
first-hand what moves us, namely images and sounds.

In conclusion, a simple rule in the programming space can give 
rise to complex phenomena, usable in the artistic effervescence, 
and yet to be described. Cyclonium is an exploratory tool to 
reveal these phenomena, raw material for creation.

2.	 Enhancing Sonographe frequency scales
The initial purpose of this research was to compose music for films 
and one of the aims was to be able to harmonically combine real 
instruments and artificially synthesized sounds. The synthesized 
sounds should then match the chromatic scale in semitones of 
classical instruments and natural or usual perception. So we first 
divide the height of the image in a logarithmic scale but inside 
each step of this scale, corresponding to a semitone, we introduce 
a harmonic sub-scale in order that two adjacent lines in a step 
will be a harmonic of the other:

[:i | | h dt | 
	 h := (i - 1) \\ 32. 
	 dt := (i - 1) // 32. 
	 (440 / 64) * (2 raisedTo: (dt / 12)) * (1 + h) ]
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The above code is the formula to compute a scale with 32 
pixels by semitone with 32 harmonics by semitone. "i" has to be 
the index of the line of the image, ranging from 1 to the height 
of the image, "h" is the rank of harmonic, "dt" is the semitone 
number. The base line starts at 440.0 Hz / 26, six octaves below 
the A 440.0 Hz. "\\" denotes modulo and "//" the integer division.

A graphic of the result is shown in figure 1.
Our framework called Cyclonium is developed in Smalltalk 

and C languages. The graphical interface is used to connect 
elements and blocs of Smalltalk code may be used to add any 
new function.

Figure 2 presents the graphical interface to construct the 
scale described above.

Figure 1. A chromatic and harmonic scale of frequencies.

Figure 2. The graphical interface in Cyclonium to construct 
the scale: the element named Biomibaukubokan is a channel 
with one source, its source Smipazofiobafovouteur is a generic 
operator described by a Smalltalk block that takes in input the 
index of channel calculated by the Admapaugh element.

In this case, we choose semitones and harmonic scale, but 
any micro-tonal and inharmonic partials can be used as any 
random set of frequencies. The code module used to compute 
the sonograph is written in C language or, in the basic cases, uses 
the OpenGL library to delegate computing to the graphic card.

The user gives the image to be interpreted, a duration in 
milliseconds, and at least one frequency scale. By default a sine 
waveform is used for the additive synthesis.

If the user gives a second frequency scale, the system will 
interpolate frequencies between the first and the second along 
the whole time of the image for each line independently. This 
enables the user to describe frequency scales varying linearly 
from one scale to another along the x axis. A third option is 
provided to precisely control frequency of each dot of the image: 
the user gives a second image of the same size whose values 
are used to calculate the frequency of each point by using it’s 
value as a weight between the first and the second scale. This 
may be used, for example, to introduce vibrato or temperament 
variations locally.

In short, the interface of the Sonographe element in 
Cyclonium takes: an image, a duration, the first frequency scale, 
optionally a frequency control image, a second frequency scale, 
optionally a waveform (by default a sine wave), eventually a 
frequency modulation element (see below), and eventually an 
image used to spacialize the sound in a pair of stereo channels.

Figure 3 shows the interface for a Sonograph in Cyclonium2.
2.1	 Benefits of the chromatic and harmonic scale
As we are drawing sonographs by hand, it is not easy to know how 
a drawing will sound. Brushstrokes are generally more than one 
pixel thick and with a classical scale they induce characteristic 
beats. In our case, strokes may cross semitone boundaries, but 
the thickness of the brush corresponds more to the harmonic 
richness than to a cluster of close frequencies.

Timbre in additive synthesis is controlled by partial 
amplitudes. As partials are regularly dispatched following a 
modulo rule it is easy to build an image that can be used as a 
filter by multiplying it with the source image in order to control 
amplitude of partials. For example, to generate a filter of 2336 
pixels high, for 32 harmonic amplitudes linearly decreasing the 
following code block is connected to a Dessinateur element:

[:p | 32 - ((2335 - p y) \\ 32) ]

2	 The whole scheme may be saved in XML format for later 
use. Each element has a unique name automatically generated, but the 
user can rename and describe them as he wants. Hyperlinks to web 
pages may be included in full description of elements for their docu-
mentation.



The resulting image is then multiplied by the source image 
to produce a new input to the Sonographe element (see figure 
4, 5 and 6). The filter may be used in an external application 
like GIMP or Photoshop and used as a layer mask or the filtered 
image may be directly produced with a binary block taking in 
parameters the image and each point of the image:

[:i :p | (i lecture: p) *
	 (32 - ((2047 - p y) \\ 32)) ]
Operators in Cyclonium may operate directly on images. To 

multiply two images, we just have to connect a product operator 
on the two images and compute it.

Figure 3. Colkaufuguchaugakafauma: Imported colored image (bmp or jpeg). Kofudafa: Constant expressing the duration 
in milliseconds. Chuimouka: Automatically generated sine wave for the waveform. Suoaugochabefi: Sonographe element. 
Biomibaukubokan: Frequency scale used two times, from start to end, because it has to be constant in this case. Midoubibavachakukan: 
Mono sound channel resulting of the computation of this Sonographe. The signal is then saved in any sound file format managed by 
the Libsndfile from Erik de Castro Lopo (http://en.wikipedia.org/wiki/Libsndfile).

2.2	 Chords and modal filtering
At this point, we can compute music in a chromatic scale and 
have a graphic control on pitch, dynamic and timbre. A simple 
set of new filters may be used to control chords. If we had to, 
or if we want the result to be constrained by harmonic rules or 
modal scales, we just have to multiply image by a new filter. 
As our filters are expressed in gray value scale image, the chord 
progression may be smooth or harsh. As chords and/or modes are 
expressed in the 2D space of time and frequency, we can draw 
retards, anticipation, and even mix different chords at the same 
time for different frequency ranges.

Figure 4. Example of a chord filter image build with 3 four-
voice chords: 0 3 6 10, 0 4 7 11 and 0 4 7 10.

Figure 5. Image of figure 6 filtered by harmonic and chord filter 
of figure 4.



For example, this is the block of code to build a simple four-
voice chord of degree VII major or the second degree minor:

[:p | (#(0 3 6 10) includes: ((4095 - p y) // 32) \\ 12) 	
	 ifTrue: [1] ifFalse: [0] ]

0 3 6 10 are the intervals in semitone from the fundamental. 
4095 is one less than the desired height of the image and 32 is the 
number of pixels by semitone.

Once we have built all the desired chords, modes and scales, 
we combine them in an external graphic editor and then multiply 
the image by the resulting filter.
2.3	 Image encoding adapted to sound control parameters
Usual painting, image tools and image file formats use only 8 bits 
by component to store value of pixels and 8 bits means only 256 
different levels. In our case of using images to control intensities, 
frequency variations, and any sound parameter, we need more 
than 8 bit resolution. In our framework, we choose 16 bits to 
store gray levels for each pixel of an image. This leads to 65536 
levels. In order to keep compatibility with external softwares, we 
use the following method to encode 16 bits gray level images 
into 24 bits colored images:

The first four high bits are triplicated in each first nibble of 
the RGB components, then, the lower weight bits are shuffled in 
the remaining space, alternatively in R, G and B. Figure 8 shows 
this wrapping.

For the user, resulting images in RGB are close to the 
original gray value image and, for the computer, the 16 bits 
original data can be used. The framework leaves the possibility 
to save a calculated image either in RGB encoded bmp, lossless, 
or to export it in standard 8 bit gray value bmp with a loss of data.

Figures 9 and 10 show the same image with the two encoding 
format construct with the code:

[:theta :r |
	 (theta + (r * 15)) sin ]

Figure 6. Original image, painted with watercolor and filtered 
in three steps: a negative filter is applied to convert the white 
background into black, then as all the colors have changed to 
negative, we apply a rotation of 180° on the hue component 
to restore tint. The last step is to apply a level filter in order to 
enhance contrast and eventually cut off the noise induce by the 
grain of paper.

Figure 7. A detail of the image figure 6.

Figure 8. Encoding 16 bits gray levels into 24 bits RGB.

Figure 9. 8 bits standard gray level image.



Figure 10. 16 bits gray levels image encoded in RGB. Notice 
that this image looks very similar than the figure 9 image, this is 
expected, but the data encoded are on 16 bits instead of 8.

Figure 11. 3D view of the levels.

2.3.1	 Colored images
We can also directly use a colored image as the input. In this 
case, the color value coded in RGB is divided by 16777215 to get 
a value between 0 and 1.  As the red component has a factor of 
256*256, the green component 256 and the blue component only 
1, this is not a correct nor conventional transcription of a color 
into an intensity but it is useful in practice to avoid conversions 
and results are still in conjunction with our perception of the 
image.
2.3.2.	 Virtual images
Images may be seen as function of x and y coordinates. When we 
can express them by a formula, we don’t have to store every pixel 
value in memory. Instead, we only give a block to be evaluated 
each time the value is needed. This kind of image has no frame, 
neither height nor width.
2.4	 Sonographe with frequency modulation
As mentioned above, a Sonographe element can be connected to a 
Modulator element. The Modulator element like the Sonographe 
element takes as input an image to control amplitudes, one or 
two frequency scales and an optional frequency control image 
to control the modulation frequencies with the same rules, an 
optional wave form and finally an element giving the modulation 
indices for each line of the image.

3.	 Time and rhythms aspects in Sonographe
Actually, the time in sonographs is linear and constant for a given 
computation. It is expressed in milliseconds by pixel, or in an 
alternative way, we give a duration in milliseconds for an image 
or a sequence of images and the sample frequency, then, the 
value of number of sample by pixel is deduced.

For all the parameters of sonographs controlled by an image, 
the procedure includes automatically a maximal variation of the 
parameter from one pixel to the next in the time axis. By default 
the maximum variation is one divided by the number of samples 
in one pixel, but we can set any coefficient to this value in the 
setting of the Sonographe element, independently for increasing 
and decreasing values. For example, we can set different values 

for the attack and the release, or for ascending and descending 
portamenti when an image controls the frequencies. In the same 
way, we can control the maximum speed of the pan to the left 
or to the right. The limitation is that this control is global on the 
image or the sequence.
3.1	 Geometric progression and rhythms
We now focus on rhythms and we want to go beyond the 
mechanical constraint of linear time given in milliseconds per 
pixel by constructing rhythm filters (or time stretching patterns) 
for our sonograph images. 

A time stretching pattern is an image where the gray levels 
are normalized abscissa of points to be taken in the source image. 
The time identity function is a pattern with a shade of gray from 
black on left to white on right, and will result in no change, just 
copy the source image. 

For example, we want to build a rhythmic cell that will be 
repeated with a geometric progression, accelerating, but with the 
aim that, at the end of a sequence, the sum of k + 1 cells gets 
the same duration as the first one. The problem is the same for 
decelerating by reversing the x axis orientation.

We are looking for the common ratio q of a geometrical 
sequence U0, U1, ... , Un of n + 1 terms, such that the sum of k + 1 
last terms be equal to the first term.

We must have : n ≥ 2, q ≠ 1, k < n.
In general for any geometrical progression we have:
Up + Up+1 + ... + Un = Up * ( 1 – q (n−p+1)) / (1 – q).
If p = n – k we have
Un-k + Un-k+1 + ... + Un = Un-k  * ( 1 – q (n−n+k+1)) / (1 – q)
and, as Un-k is a term of the progression,
Un-k  = U0 * q (n - k)

and we want that : U0 = Un-k + Un-k+1 + ... + Un
So :
U0 = U0 * q (n - k) * (1 - q (k + 1)) / (1 - q)
1 = (q (n - k) - q (n + 1) ) / (1 - q)
1 - q = q (n - k) - q (n + 1)

We get the general formula :
q (n + 1) = q (n - k) + q - 1



A well known particular case:
If n = 2 and k = 1, there are 3 terms and the sum of the last 

two is equal to the first.
q3 = q1 + q - 1 = 2q - 1
We find that the reciprocal of the golden ratio : 0.6180339887... 

is a solution.
As the general formula is of high degree, we find the value of 

the ratio q by approximations.
Here follows an array with the first values of n and k:

n k q
2 1 0.6180339887
3 1 0.7548776662
3 2 0.5436890127
4 1 0.8191725134
4 2 0.6823278038
4 3 0.5187900637
5 1 0.8566748839
5 2 0.7548776662
5 3 0.6518234538
5 4 0.5086603916
6 1 0.8812714616
6 2 0.8000949944
6 3 0.724491959
6 4 0.6368829168
6 5 0.5041382584
7 1 0.8986537126
7 2 0.8311059462
7 3 0.7713274516
7 4 0.708133776
7 5 0.6289286919
7 6 0.5020170552

Example:
Once we get the formula for a particular case, for example, 

n = 6 and k = 2
q (n + 1) = q (n - k) + q - 1
q 7 = q 4 + q - 1
we get an expression in high degree, with no simple way to 

find the roots. The approximate value of q is 0.8000949944 in 
this case. Then we compute the series  U0, U1, ... Un and sum the 
series:

0, U0, U0 + U1, U0 + U1 + U2, etc., up to the width of the 
destination image. We associate these accumulations to the 
source coordinates to form the control points of a spline, and 
finally approximate the spline to a polyline with a sufficient 
precision (see figure 12).

4.	 Sounds and music production from video
We propose here two ways to create sounds and music from video 
using the time / frequency representation of sonographs and 
another method, using trajectories of virtual mobiles (Lesbros, 
1999). All these methods give results that are tightly coupled to 
the video images along time.
4.1	 Sonographe sequence
The first one is to select a set of video frames, taken at regular 
time intervals and to chain the sonographic transformation of 

Figure 12. Time stretching pattern for the case n = 6 and k = 2. 
We get 7 bands, and the width of the first one is equal to the 
sum of the width of the three last. This image is later used to 
transform coordinates of the real rhythmic pattern to be used in 
the composition. Regular time pulsations in the source image 
will be accelerated regularly (in geometrical progression), and 
respecting the fact that the three last occurrences will have the 
same duration than the first one.

each selected frame. For example, we choose a time interval 
of three seconds, we select one frame of the video every three 
seconds, and on each frame we compute a sonograph of three 
seconds.

Our function library enables us to chain computation on 
successive images3 by returning all current temporary values 
to the caller at the end of each step.  For example the current 
envelope value, the current frequency, the current pan value, etc. 
for each line. This yields a continuous sound in spite of frame 
boundary crossings.

As in the case of a unique image, the user gives the total 
duration in milliseconds. This duration is divided by the number 
of images in the sequence. The system calculates an entire 
number of samples by image.
4.2	 Trajectories 
The sequence of image element can point to a computation 
chain that calculates the index of the image to use at any step 
of a computation. If we are computing a sound channel, a step 
of computation will correspond to one sample of the produced 
signal. If we are computing an image (with a Dessinateur 
element), a step will correspond to one pixel. Thanks to these 
properties, we can produce sounds whose parameters, or even 
direct sample values, are taken from any frame of the sequence. 
If it is ensured that the index of the frame is calculated in relation 
to the time, the produced sounds will fit to the evolution of the 
movie or film.

3	 The user interface representing a sequence of images needs 
only to know the folder where images are stored. All the images have 
to be of the same size and they are computed in alphabetical order, 
but they don’t have to be taken from a video, theses sequences may be 
constructed by any other source.



Figure 13. Kagu: a sequence of 146 images.
Smizazouteur: the image selector receiving the index of a 
sample and producing the index of a frame in the sequence with 
the following block of code:

[:i | (((i - 1) * 146) / 6912000) + 1 ]
"i" is the sample index (from 1 to  6912000), 146 is the number 
of frames.
Zikedouguifadi: a trajectory.
Oogakipavu: a cog used to link our instrument Utpazifufu with 
the trajectory and the image sequence.
Kouzeme146images: The resulting channel being calculated. It’s 
length is 6912000 samples corresponding to the 144 seconds of 
sounds at 48000 Hz (the standard sample rate for video).

In this example (figure 13), reduced to the minimum, the 
trajectory is fixed and the frequency of the instrument is fixed 
too. There is no amplitude control or frequency modulation. But 
the framework provides elements to build calculation chains to 
modify and combine trajectories, to sample images along these 
trajectories and to use these values for controlling frequencies, 
amplitudes, frequency modulation, etc., in fact, any value in the 
scheme. Elements are also provided to compute elastic coupling 
in conjunction with trajectories. See (Rainer, 2004, Lesbros 
1999) for quick synthesis algorithms.
4.3	 Building a summary of a video
With the same two principal elements; a sequence of image 
coming from a video and a selector, we can build an image that 
acts as a summary of the video on which we can compute the 
sonograph. Prior to computing the sonograph, we can apply all 
the filtering methods we have seen above; harmonic filtering, 
chord filtering, etc.

A Dessinateur element is used to create the new image. Each 
step of computation consists in determining the value of a given 
pixel. The Dessinateur element provides the coordinates of the 
point to be calculated, and its input should respond with the 
value to store in the produced image at that location.

The heart of this example (figure 14) is the element that gives 
the value to the Dessinateur. For the extraction of the green 
component this element uses the following code:

[:i :p | | aRate aColor |
 aRate := (p y / 2335) * 436.32 + ((2335 - p y) / 2335). 

 aColor := i couleur: ((p x * 3504 * aRate / 7272) @ p y). 
 aColor green ]

The block receives the image sequence, "i", and the 
Dessinateur current coordinate "p" as parameters. "aRate" is 

Figure 14. In this example, the sequence Fofepauka contains 3636 images extracted from a video of 145,44 seconds (at 25 frames by 
seconds) and we construct a summary of 7272 pixels wide. The selector Smaduzivamuiteur is a Smalltalk block of code:

[:p | (p x * 3636 / 7272) + 1 ]
where p given by the Dessinateur element, is the coordinate of the desired point in final image. The value returned is the index of 
frame in the sequence (between 1 and 3636).
The Dessinateur Tyrmuigukuipivasaure has been set with the following parameters and choices: 7272 x 3636 for the size of resulting 
image, unset automatic level to insure that values of components of the image will stay unchanged and process from left to right 
instead of top down to limit the number of time an image from the sequence will be loaded into memory.



the rate at which we want to scan source images and we make 
it dependent of the ordinate which is linked to the frequency. 
We want low lines to be scanned at three times per second 
(145.440 * 3 gives 436.32) and high line at only one scan for the 
whole piece. Then we compute the x and y coordinates (y is left 
unchanged) and ask for the color of the point with the #couleur: 
message. Finally we deliver the green component value, ranging 
from zero to one. We do the same for red and blue components 
and with the Pemiochiogouzaupadouteur element we are able to 
reassemble the three components into one image which can be 
seen as a summary of the video. The next step is to use this image 
to generate sounds evolving with the movie.

5.	 Conclusion
Our framework is still under development. A set of tools has 
been built in order to create images, sound and music from 
images. As the computations are not in real time, we can set the 
atomic level of a chain of computation at the sample level or 
even at a subsample level (Roads 2001, p3-5). This may enable, 
for example, to control envelopes with the same unit of time as 
the samples.

Using generic operators and the Smalltalk language keeps 
the framework open to new experimentation. For example, by 
using generic operators, one may combine elements used to 
generate MIDI files with a Traceur element to generate at the 
same time a MIDI score and an image usable in a Sonographe. 
Any method can be used to generate paintings used with any 
mapping in musical compositions (Guéret et al., 2004; Mao et 
al., 2002; Thiebaut et al.; 2008). 

By introducing variable scales and frequency control through 
images, we enhance the possibilities of sonographic composition. 
Sonographs with frequency modulation and pan are also open to 
new experiments, combined with filters for harmonics, chords 
and/or rhythmic time stretching patterns.

Finally, we show how to use sequences of images extracted 
from a video in order to have any parameter of a generated sound 
matching the stream of the video.
Annexe 1 sound samples

https://soundcloud.com/vincent-lesbros
http://www.f-tv.info/fr/cyclonium

Figure 15. The summary image of the video with variable scan rates according to the ordinate.

References
Englert, Giuseppe G., 1981, Automated Composition and 
Composed Automation, dans  : The Music Machine, édité par 
C. Roads MIT Press 1989 p-191, translated from french by 
Otto LASKI with Curtis ROADS. Musique : Composition 
Automatique, Automation Composée, Informatique et Sciences 
Humaines 45, Sorbone, Paris, 1981.
Goldberg, David, 1991, What Every Computer Scientist Should 
Know about Floating-Point Arithmetic, ACM Computing 
Surveys, vol. 23, no 1, mars 1991.
Guéret, Christophe ; Monmarché, Nicolas ; Slimane, Mohamed, 
2004, «  Ants can play music  » in  : Conference: Ant Colony 
Optimization and Swarm Intelligence, 4th International 
Workshop, ANTS 2004, Brussels, Belgium, September 5 - 8, 
2004, Proceedings
Lesbros, Vincent, 1995, « Atelier Incrémentiel pour la musique 
expérimentale », Thèse de Doctorat en Intelligence artificielle, 
Paris, Université de Paris 8.
Lesbros, Vincent, 1996, «  From images to sounds: a dual 
representation », Computer Music Journal, 20(3):59-69.
Lesbros, Vincent, 1999, « Phonograms, Elastic Couplings, and 
Trajectories », Computer Music Journal,  23(2):70-79.
Mao, Xia; Chen, Bin; Zhu, Gang; Hoshino, Tsutomu, 
2002, «  Study on transforming from painting to music  », 
VIPromCom-2002. 4th EURASIP - IEEE Region 8 International 
Symposium on Video Image Processing and Multimedia 
Communications, 16-19 June 2002, Zadar, Croatia.
Rainer, Harald, 2003, «  Smart sound generation for mobile 
phones  », Diploma thesis at Graz university of Music and 
Dramatic Arts.
Roads, Curtis, 1995, The computer music tutorial, MIT Press 
Cambridge, MA, ISBN:0262181584
Roads, Curtis, 2001, Microsound (en). Cambridge: MIT Press. 
ISBN 0-262-18215-7
Thiebaut, Jean-Baptiste  ; Healey, Patrick G. T.  ; Kinns Nick 
Bryan; 2008, «  Drawing electroacoustic music  », Interaction, 
Media and Communication, Queen Mary, University of London.
Xenakis, Iannis, 1971, Formalized music, Bloomington, Indiana 
University Press.
Xiaoying, Wu, and Ze-Nian, Li, 2008, « A study of image-based 
music composition  », School of Computing Science, Simon 
Fraser University.


